pLGG Subtypes

pLGG is a heterogenous group of solid brain tumors1,2

Lily, lives with pLGG.
Lives for dancing.

Most of these tumors have a BRAF alteration (fusion or mutation)2

Overview of BRAF alterations in pediatric low-grade glioma (pLGG)3-5

DiagnosisTypical locationBRAF alteration/frequency

Pilocytic astrocytoma

Brain with highlighted pilocytic astrocytoma tumor locations

KIAA1549-BRAF: 70-80%

BRAF V600E: 3-5%

Ganglioglioma

Brain with highlighted ganglioglioma tumor locations

KIAA1549-BRAF: 10-15%

BRAF V600E: 40-50%

Desmoplastic infantile astrocytoma/ganglioglioma

Brain with highlighted desmoplastic infantile astrocytoma ganglioglioma tumor locations

KIAA1549-BRAF: 2-5%

BRAF V600E/D: 40-60%

Diffuse leptomeningeal glioneuronal tumor

Brain with highlighted diffuse leptomeningeal glioneuronal tumor locations

KIAA1549-BRAF: 75%

Dysembryoplastic neuroepithelial tumor

Brain with highlighted dysembryoplastic neuroepithelial tumor locations

BRAF V600E: ~3-10%

Pleomorphic xanthoastrocytoma

Brain with highlighted pleomorphic xanthoastrocytoma tumor locations

BRAF V600E: 80-90%

Talk to your patients about early comprehensive BRAF testing in pLGG

Download the Discussion Guide

Not all diagnostic tests can identify all BRAF alterations3

Genomic testing in pLGG is critical to identifying potential targeted treatment strategies. Common tests can be used to detect BRAF point mutations and/or fusions, which characterize about 2/3 of pLGG cases.3

Common testing techniques used to detect BRAF alterations3

DNA and/or RNA sequencing (eg, Next-generation sequencing)

Immunohistochemistry

Fluorescent in situ hybridization

Polymerase chain reaction

Sequencing-based approaches (eg, Next-generation sequencing) enable comprehensive detection of BRAF alterations in a single test.3

Next Page:
BRAF Alterations

Back to Top

References: 1. Hauser P. Classification and treatment of pediatric gliomas in the molecular era. Children (Basel). 2021;8(9):739. doi:10.3390/children8090739 2. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231-1251. doi:10.1093/neuonc/noab106 3. Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun. 2020;8(1):30. doi:100.1186/s40478-020-00902-z 4. Behling F, Schittenhelm J. Oncogenic BRAF alterations and their role in brain tumors. Cancers (Basel). 2019;11(6):794. doi:10.3390/cancers11060794 5. Andrews, LJ, Thornton ZA, Saincher. Prevalence of BRAF V600E in glioma and use of BRAF inhibitors in patients with BRAF V600E mutation-positive glioma: systemic review. Neuro Oncol. 2022; 24(4):528-540. doi:10.1093/neuonc/noab247 6. Sholl LM. A narrative review of BRAF alterations in human tumors: diagnostic and predictive implications. Precis Cancer Med. 2020; 3(26);1-15. doi:10.21037/pcm-20-39 7. Yaeger R, Corcoran RB. Targeting alterations in the RAF-MEK pathway. Cancer Discov. 2019;9(3):329-341. doi:10.1158/2159-8290.CD-18-1321 8. Srinivasa K, Cross KA, Dahiya S. BRAF alterations in central and peripheral nervous system tumors. Front Oncol. 2020;10:574974. doi:10.3389/fonc.2020.574974 9. Sun Y, Alberta JA, Pilarz C. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol. 2017;19(6):774-785. doi:10.1093/neuonc/now261 10. Penman CL, Faulkner C, Lowis SP, Kurian KM. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol. 2015;5:54. doi:10.3389/fonc.2015.00054 11. Ryall S, Zapotocky M, Fukuoka K, et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell. 2020;37(4):569-583.e5. doi:10.1016/j.ccell.2020.03.011 12. Cohen AR. Brain tumors in children. N Engl J Med. 2020; 386(20):1922-1931. doi:10.1056/NEJMra2116344 13. Lassaletta A, Zapotocky M, Mistry M, et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol. 2017;35(25):2934-2941. doi:10.1200/JCO.2016.71.8726